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Natural convection in cavities with a thin fin on the hot wall
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Abstract

A numerical study has been carried out in differentially heated square cavities, which are formed by horizontal adi-

abatic walls and vertical isothermal walls. A thin fin is attached on the active wall. Heat transfer by natural convection

is studied by numerically solving equations of mass, momentum and energy. Streamlines and isotherms are produced,

heat and mass transfer is calculated. A parametric study is carried out using following parameters: Rayleigh number

from 104 to 109, dimensionless thin fin length from 0.10 to 0.90, dimensionless thin fin position from 0 to 0.90, dimen-

sionless conductivity ratio of thin fin from 0 (perfectly insulating) to 60. It is found that Nusselt number is an increasing

function of Rayleigh number, and a decreasing function of fin length and relative conductivity ratio. There is always an

optimum fin position, which is often at the center or near center of the cavity, which makes heat transfer by natural

convection minimized. The heat transfer may be suppressed up to 38% by choosing appropriate thermal and geomet-

rical fin parameters.

� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Natural convection heat transfer in differentially

heated, partitioned cavities are encountered in various

industrial applications, such as heating and ventilating

of living spaces, fire in buildings, solar thermal collector

systems, electronic cooling devices, in storage of radio-

active wastes. Studies of various aspects of this problem

have been carried out by many researchers both theoret-

ically and experimentally.

Excluding studies with multiple fins in tall systems

(see, for example, [1–3]), thick fin(s) in square and tall

cavities (see, for example, [4–6]), the specific problem

studied in this work involving a single thin fin attached

to the hot or cold wall makes a distinct category, which
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has been studied by various researchers that we will

briefly review [7–11]. Oosthuizen and Paul [7] studied

differentially heated cavities with aspect ratio between

3 and 7 with a horizontal plate attached to the center

of the cold vertical wall. They found the local heat trans-

fer rate on the upper portion of the hot wall increased,

but the heat transfer rate near the center of the hot wall

decreased. Frederick [8] studied a similar situation in a

inclined cavity with diathermal partition at Rayleigh

number between 103 and 105. The partition was attached

to the cold wall at its center, its relative length was 0.25

and 0.50. The inclination angle was from 90� (corre-

sponding to horizontal partition) to 45�. His results

showed that the partition caused suppression of convec-

tion and the heat transfer relative to that in an identical

cavity without partition was reduced considerably.

Frederick and Valencia [9] studied natural convection

in a square cavity with a conducting partition at the

center of its hot wall and with perfectly conducting
ed.
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Nomenclature

A cavity aspect ratio, H/L

YP dimensionless thin fin position, h/H

WP dimensionless thin fin length, w/H

cp heat capacity, J/kg K

g acceleration due to gravity, m/s2

H cavity height, m

k thermal conductivity, W/m K

kr dimensionless conductivity, kfin/ka
L cavity width, m

Nu Nusselt number, Eq. (5)

p pressure, Pa

P dimensionless pressure, (p � p1)L2/qa2

Pr Prandtl number, m/a
Ra Rayleigh number, gbDTL3/(mak)
t time, s

T temperature, K

U,V dimensionless fluid velocities, uL/a,vL/a
X,Y dimensionless Cartesian coordinates, = x/L,

y/L

x,y Cartesian coordinates

Greek symbols

a thermal diffusivity, m2/s

b volumetric coefficient of thermal expansion,

1/K

m kinematic viscosity, m2/s

q fluid density, kg/m3

w stream function

h dimensionless temperature, (T � TC)/

(TH � TC)

s dimensionless time, at/L2

Subscripts

a air

C cold, ambient value

ext extremum

f fluid

fin fin

H hot, active

loc local

max maximum

min minimum

Superscript

– average
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horizontal walls. Partition length and its conductivity

were variable. For low values of relative conductivity,

they reported reduced heat transfer with respect to that

in an identical cavity without partition at Rayleigh num-

bers between 104 and 105. Nag et al. [10] studied numer-

ically in a differentially heated square cavity where a

horizontal plate was attached on the hot wall. The

length and the position of the partition were varied

and Rayleigh was between 103 and 106. They considered

two cases, one with adiabatic partition and the other

with perfectly conducting partition. They found that

with the perfectly conducting partition the heat transfer

at the cold wall increased irrespective of its position or

length and it is attenuated with the adiabatic partition,

which was more pronounced when the position of the

partition was higher. Shi and Khodadadi [11] studied

numerically the same problem reported by Nag et al.

with almost perfectly conducting partition on the hot

wall, but with more extensive parametric details. Their

dimensionless fin length was between 0.20 and 0.50,

which had seven positions along the hot wall and

Rayleigh number was from 104 to 107. Since the fin

was almost perfectly conducting and attached to the

hot wall, the fin�s heating enhanced the convection while

its blockage of the flow field suppressed it. The contri-

bution of these two counter-acting mechanisms were
not clearly quantified. Based on the numerical data,

they proposed correlations to calculate Nusselt num-

ber as a function of relevant parameters for this partic-

ular case.

We see from this brief review that excluding that by

Frederick and Valencia [9], all other studies considered

only the perfectly conducting or insulated partitions.

Yet, in practical engineering problems, often partitions

are made from materials with finite conductivities. In

this paper, we will study the case with dimensionless

fin length from 0.10 to 0.90 at dimensionless fin position

from 0.10 to 0.90 and fin to air conductivity ratio from 0

(perfectly insulating materials) to 60 (construction and

fabrication materials) and examine heat transfer by con-

duction and convection due to fins with finite conductiv-

ity ratios.
2. Problem and mathematical model

2.1. Problem definition

A schematic of the two dimensional system is shown

in Fig. 1. The square cavity is differentially heated, the

left isothermal wall is at TH and the right at TC with hor-

izontal walls insulated. A thin fin of WP long is attached



Fig. 1. Schematic of the square cavity with thin fin attached on

the hot wall, the coordinate system and boundary conditions.
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to the active wall at a height YP. The coordinate system

and boundary conditions are also shown in Fig. 1.

2.2. Mathematical model

The continuity, momentum and energy equations for

a two dimensional laminar flow of an incompressible

Newtonian fluid are written. Following assumptions

are made: there is no viscous dissipation, the gravity acts

in the vertical direction, fluid properties are constant and

fluid density variations are neglected except in the buoy-

ancy term (the Boussinesq approximation) and radiation

heat exchange is negligible. Using non-dimensional vari-

ables defined in the nomenclature, the non-dimensional

governing equations are obtained as

oU
oX

þ oV
oY

¼ 0 ð1Þ

oU
os

þ U
oU
oX

þ V
oU
oY

¼ � oP
oX

þ Prr2U ð2Þ

oV
os

þ U
oV
oX

þ V
oV
oY

¼ � oP
oY

þ Prr2V þ RaPrh ð3Þ

oh
os

þ U
oh
oX

þ V
oh
oY

¼ r2h ð4Þ

The steady-state solutions are obtained from

unsteady-state equations, Eqs. (1)–(4). The local, aver-

age and normalized average Nusselt numbers are calcu-

lated respectively as

Nuloc ¼ �
oh
oX

h

Nu ¼
R A
0
Nuloc dY

Nu ¼ NuRa
NuRa¼0

9>>>>>=
>>>>>;

ð5Þ
The stream function is calculated from its definition

as

U ¼ � ow
oY

; V ¼ ow
oX

ð6Þ

where w is zero on the solid surfaces and the streamlines

are drawn by Dw = (wmax � wmin)/n with n = number of

increments.

2.3. Boundary conditions

The boundary conditions of the system shown in

Fig. 1 are U = V = 0 on all solid surfaces, oP
on ¼ 0 on all

solid surfaces at the outside boundaries. On the adia-

batic boundaries, oh
on ¼ 0. Thus,

On all solid boundaries : U ¼ V ¼ 0

at X ¼ 0
oP
oX

¼ 0; h ¼ 1

at X ¼ 1
oP
oX

¼ 0; h ¼ 0

at Y ¼ 0 and Y ¼ 1
oP
oY

¼ 0;
oh
oY

¼ 0

9>>>>>>>>=
>>>>>>>>;

ð7Þ
3. Numerical technique

The numerical method used to solve Eqs. (1)–(4) is

the SIMPLER (semi-implicit method for pressure linked

equations revised) algorithm [12]. The computer code

based on the mathematical formulation discussed earlier

and the SIMPLER method were validated for various

cases published in the literature, the results of which

are discussed elsewhere [13].

Non-uniform grid in X and Y direction were used for

all computations. Grid convergence was studied for the

case of WP = 0.5 with grid sizes from 20 · 20 to 80 · 80

at Ra = 105. Grid independence was achieved within

1.2% in Nusselt number with grid size of 40 · 40. Similar

tests were done with the cavities having thin fin at differ-

ent positions with different length, and found that the

grid size was satisfactory. For the thin fin, four mesh

points were used and its dimensionless thickness was

0.01. Using a system with 2.0 GHz clock speed, a typical

execution time (real time), at Ra = 105 for example, was

31.65 s and the number of iteration was 3260.

The accuracy control was carried out by the conser-

vation of mass by setting its variation to less than

10�3, on the pressure term by setting the variation of res-

idues at 10�3. In addition, the accuracy of computations

was checked using the energy conservation within the

system, by setting its variation to less than 10�4.

The natural convection in the undivided square

cavity is calculated for Ra from 104 to 109 and shown

in Table 1, where the results with the mesh size of

40 · 40 of the benchmark case is also given for 105



Table 1

Validation in a square cavity

Ra Nu [14] Nu (this study) jWextj [14] jWextj(this study)
104 2.246 2.245 – 5.07536 (0.5,0.5)

105 4.511 4.521 9.601 (0.2875,0.6) 9.599 (0.2962,0.585)

106 8.777 8.800 16.954 (0.15,0.55) 17.035 (0.1649,0.5424)

107 16.6287 31.113 (0.0940,0.5424)

108 31.5202 56.9806 (0.0462,0.5424)

109 60.7284 103.3060 (0.0244,0.5424)
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and 106 [14]. It is seen that the agreement is very good:

The deviation in Nusselt number obtained by the code

is 0.22% for Ra = 105 and 0.26% for Ra = 106, while that

in jWextj is 0.02% and 0.48% respectively. As a further

check, the average Nusselt numbers at the hot and cold

walls were compared, which showed a maximum differ-

ence of about 0.5% in all runs.
4. Results and discussion

Geometrical and thermal parameters governing the

heat transfer in differentially heated square cavities with

thin fin attached to the active wall are: aspect ratio

A = L/H = 1, the length of thin fin, WP = 0, 0.1, 0.3,

0.5, 0.7, 0.9, the position of thin fin, YP = 0, 0.10, 0.30,

0.50, 0.70, 0.90, the dimensionless conductivity of thin

fin, kr = 0, 1, 30, 60. Thus, the cases considered

were 144 all together. Rayleigh number was varied from

104 to 109.

Flow and temperature fields, and heat transfer

through the cavity are examined. All results are with

Pr = 0.7. First, we will present flow and temperature

fields for typical cases, then we will present the norma-

lized Nu number calculated by Eq. (5) as a function of

Rayleigh number and the other non-dimensional

parameters.

4.1. Flow and temperature fields

Flow and temperature fields for the square cavity

without fin and for Ra = 104, 106 and 108 are presented

in Fig. 2 as reference. Nu and jWextj for various Rayleigh

numbers are given in Table 1.

Flow and temperature fields for typical cases are pre-

sented for Ra = 106 in Fig. 3. The conductivity ratio is

constant, rk = 30, the dimensionless fin length, WP is

0.3 (the first column), 0.5 (the middle column) and 0.7

(the last column) and the dimensionless fin position YP

is from 0.1 (the first raw) to 0.9 (the last row) with 0.2

increment. The flow fields are presented in Fig. 3(a).

The columns show the effect of fin position, YP while

the rows the effect of fin length, WP on the flow

fields. The reference value for the square cavity without

fin from Table 1 is: for Ra = 106, jWextj = 17.035 at (X =
0.1649,Y = 0.5424). We note that the appearance of the

flow fields in all cases is similar to the case of square cav-

ity without fin for Ra = 106 in Fig. 2, but with certain

modifications due to fins.

The first column is with constant fin length WP = 0.3.

When the fin is positioned at YP = 0.1, the circulation is

above the fin with jWextj = 16.32 located near the hot

wall at (X = 0.15,Y = 0.58). For the fin at YP = 0.3, a

small circulation develops below the fin and jWextj,
reduced slightly to 16.12, is moved to (X = 0.85,Y =

0.48) near the cold wall. This is due to the constriction

encountered at the hot wall. For the fin positioned at

the center, YP = 0.5, the circulation below the fin is rel-

atively stronger and more complete, as a result of which

the flow around the fin is with a vortex formed on the

fin. jWextj is increased to 18.55 and located near the cen-

ter of the cavity at (X = 0.49,Y = 0.59). When the fin

position becomes higher, similar to observations regard-

ing the first two cases, for YP = 0.7, a formation of a

weak circulation above the fin is observed while for

YP = 0.9, there is no visible flow above the fin. In these

cases, jWextj are 18.99 at (X = 0.49,Y = 0.60) and 17.87

at (X = 0.19,Y = 0.65). Due to blocking effect of the

fin, the convective flow is increased for YP = 0.7 while

it decreased relatively to near jWextj = 17.035 of the cav-

ity without fin for YP = 0.9. We expect the combined

heat transfer by conduction and convection to follow

the trend observed with jWextj.
The second column is for WP = 0.5, all other para-

meters being the same. We can see that the flow fields

are very similar to the case with WP = 0.3 in the first col-

umn. jWextj is 16.31 at (X = 0.17,Y = 0.55) for YP = 0.1,

15.02 at (X = 0.83,Y = 0.29) for YP = 0.3, 18.43 at

(X = 0.67,Y = 0.94) for YP = 0.5, 19.32 at (X = 0.67,

Y = 0.56) for YP = 0.7, and 17.82 at (X = 0.17,Y =

0.65) for YP = 0.9. We note that jWextj and its location

are changed similarly with position YP and in general,

jWextj is slightly decreased due to longer fin length except

for YP = 0.7, for which it is increased. The latter is due to

constriction caused by the longer fin, which makes the

circulation more rigorous in the lower part of the cavity.

In the third column of Fig. 3(a), the flow fields for

WP = 0.7 are presented with all other parameters being

the same. The longer fin acts like a divider in this case

and modifies the flow field with respect to the cases with



Fig. 2. Flow and temperature fields of differentially heated square cavity without fin. The first row: Ra = 104, the second row: Ra = 106

and the third row: Ra = 108. Flow field is on the left and the temperature field on the right.
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shorter fins. We can see the striking similarity of the flow

fields when compared to the case with WP = 0.5,
although the strength of jWextj and its location are quite

different. jWextj is 16.42 at (X = 0.15,Y = 0.58) for



Fig. 3. (a) Flow and (b) temperature fields for Ra = 106: the first column: WP = 0.3, the second column: WP = 0.5, the third column:

WP = 0.7. The first row: YP = 0.1, the second row: YP = 0.3, the third row: YP = 0.5, the fourth row: YP = 0.7 and the fifth row:

YP = 0.9.
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Fig. 3 (continued)
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YP = 0.1, 15.52 at (X = 0.47,Y = 0.62) for YP = 0.3,

19.68 at (X = 0.80,Y = 0.25) for YP = 0.5, 18.80 at
(X = 0.85,Y = 0.41) for YP = 0.7, and 17.46 at (X =

0.85,Y = 0.45) for YP = 0.9.
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The temperature fields for the same cases as in Fig.

3(a) are arranged and presented similarly and shown

in Fig. 3(b). Generally, the temperature fields in all cases

are modified and instead of isotherms of a stratified

fluid, there seems to be isotherms representing a conduc-

tion dominated flow field. Indeed in comparison to the

square cavity without fin in Fig. 2, it appears as if the

temperature fields in Fig. 3(b) correspond to Ra = 104

rather than 106. In the locations where the fin is attached

to the hot wall, the isotherms become almost parallel to

the hot wall, resulting in a modified temperature field,

which influences the entire field thereafter. For the fin

position of YP = 0.1, the isotherms show almost the

same pattern as for Ra = 104 in a square cavity without

fin in Fig. 2. As the fin position is made higher and the

fin length longer, like in the case of YP = 0.3, 0.5 and

WP = 0.7, the isotherms become similar to a conduction

dominated temperature field. There is an apparent sim-

ilarity of the temperature fields between the first row

and the last as well as the second row and the one before

the last, i.e. the temperature fields are modified similarly

for fin position with respect to the center of the cavity.

The most conduction dominated like temperature field

is for YP = 0.5. Although the convection suppression

by the fin is an expected consequence, the observed pat-

terns are remarkable at this high Rayleigh number.

Flow and temperature fields for Ra = 104 and 105

arranged similarly showed that the convection in the cav-

ity with fin was quasi-conduction dominated as we saw in

Fig. 3. Those for RaP 107 showed stratified flow, the

strength of which was increasing with Rayleigh number

for the same geometrical and thermal parameters.

4.2. Heat transfer

We will present the heat transfer results in terms of

normalized average Nusselt number defined by Eq. (5).

The definition of the average normalized Nusselt num-

ber is based on the total heat transfer by convection

and conduction of the fluid and fin divided by the con-

duction heat transfer of the fluid and fin. They are com-

puted as shown in Eq. (5). Since the conductivity of fins

is variable, by defining a dimensionless conductivity,

kr = kfin/ka, the relative fin conductivity can be used as

a parameter to compare different cases with different

conductivities. For example, for kr = 1, we get Nu = 1,

as we should, since the conduction heat transfer in the

cavity should be the same regardless of the media filling

it. For kr > 1, the heat transfer by conduction should

increase because of the presence of a fin with higher con-

ductivity than air in the cavity. Indeed, this is the case:

for example, with WP = YP = 0.5, we found NuRa=0 =

0.9948 for kr = 0, 1.0000 for kr = 1, 1.1044 for kr = 30

and 1.1686 for kr = 60. It is clear that by using this def-

inition, it becomes convenient to differentiate the effect

of the relative conductivity. Hence, Nu is the average
normalized Nusselt number and the results with square

cavity without fin is included as a reference case in the

following presentation of the results.

We present typical results as Nu versus Ra for the

case of dimensionless fin length, WP = 0.3, fin position,

YP and conductivity ratio, kr as parameters in Fig.

4(a)–(c). Fig. 4(a) shows the case with kr = 0, the insu-

lated fin. As we have seen before, the heat transfer by

conduction in this case is slightly lower than that in a

square cavity without fin and the variation in Nu repre-

sents the effect of the presence of the fin. In general, as

expected the heat transfer is lowered by the fin posi-

tioned at various dimensionless height. For YP = 0.5,

Nu is decreased by 27% at Ra = 104 and is 14% at

Ra = 109, with 6% between 107 and 108. The change in

Nu is fin position dependent: at low Rayleigh numbers,

as the fin position is near center, the decrease in Nu is

maximum, the reason for which follows the observations

made in Fig. 3 regarding jWextj. Fig. 4(b) shows the case
with kr = 1. It appears that similarly, Nu is fin position

dependent, although in this case, maximum decrease of

17% is observed for YP = 0.3 at low Rayleigh numbers

and Nu for YP = 0.9 is higher than that of square cavity

without fin, i.e., the heat transfer is enhanced. Similar

observations are made in Fig. 4(c) and (d) for kr = 30

and 60: The heat transfer decrease is fin position depen-

dent and the maximum decrease is when the fin is

attached at the center, which is 21% and 18% for

kr = 30 and 60 respectively. These results are in accor-

dance with the observations made in Fig. 3. We note

that NuRa=0 varies with fin position, passing from a max-

imum for YP = 0.5. For example, for WP = YP = 0.5,

kr = 60, NuRa=0 = 1.14952 for YP = 0.1, 1.16506 for

YP = 0.3, 1.16858 for YP = 0.5, 1.16538 for YP = 0.7

and 1.14995 for YP = 0.9. This shows that the heat trans-

fer by conduction plays an important role to increase the

heat transfer across the cavity, although the convection

heat transfer is suppressed considerably due to presence

of fins. Conversely, since the normalized Nusselt number

is calculated dividing computed Nusselt number by these

values, the normalized Nusselt number becomes smaller

with higher NuRa=0 values, the effect of which varies

with YP.

To see the effect of the dimensionless fin length, WP

on the convection heat transfer, we present the case with

fin position at YP = 0.3 for kr = 1 and 60 in Fig. 5(a) and

(b). As expected, in both cases Nu is a decreasing func-

tion of dimensionless fin length. For the case of kr = 1,

Nu is suppressed by 30% to 7% between Ra = 104 and

109. For the case of kr = 60 in Fig. 5(b), Nu is suppressed

even more by 38% to 26% between Ra = 104 and 109.

Fig. 6 shows the effect of the relative conductivity, kr
on the flow fields for the case of Fig. 5 for Ra = 104 and

108. The first row is for kr = 1, the second for 30 and the

third is for 60. For Ra = 104, the appearance of the flow

is slightly modified when kr is increased from 1 to 30 and
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Fig. 4. Nusselt number as a function of Rayleigh number with WP = 0.3 and YP from 0.1 to 0.9 as a parameter: (a) kr = 0, (b) kr = 1,

(c) kr = 30 and (d) kr = 60.
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Fig. 5. Nusselt number as a function of Rayleigh number with YP = 0.3 and WP from 0.1 to 0.9 as a parameter: (a) kr = 1, (b) kr = 60.
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then to 60. jWextj is 3.62 (X = 0.65, Y = 0.48) for kr = 1,

3.78 (X = 0.65,Y = 0.49) for kr = 30 and 3.86 (X = 0.65,

Y = 0.49) for kr = 60. It is seen that the strength of circu-

lation is enhanced by 4.4% by increasing kr from 1 to 30

and 6.6% from 1 to 60, and the location of jWextj practi-
cally did not change. It is noted that jWextj in these three

cases is lowered considerably with respect to the case of
the cavity without fin, since the flow field is quasi-

conductive. For Ra = 108 shown in the second column,

jWextj is 70.32 (X = 0.42,Y = 0.51) for kr = 1, 69.63

(X = 0.40,Y = 0.49) for kr = 30 and 69.38 (X = 0.40,

Y = 0.49) for kr = 60. It is observed that due to high

Rayleigh number convection, the circulation strength

is decreased by 0.9% from kr = 1 to 30 and 1.3% from



Fig. 6. Flow fields for Ra = 104 and 108 with WP = 0.3 and YP = 0.5. The first column: Ra = 104 and the second: Ra = 108. The first

row: kr = 1, the second row: kr = 30 and the third row: kr = 60.
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1 to 60 and the location of jWextj is almost the same. In

this case, jWextj is considerably higher with respect to
that in the cavity without fin, because a part of the cross

section is blocked by a standing vortex above the fin and
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to transport almost the same energy, the fluid convec-

tion hence jWextj is increased. The manifestation of these

observations on the normalized Nusselt number has

been as stated above discussing Fig. 5.

Following Fig. 4(c) with fin length, WP = 0.3, Nu as a

function of Ra is presented in Fig. 7(a) and (b) with

WP = 0.5 and 0.7 and keeping the other parameters the

same as in Fig. 4. Fig. 7(a) shows that Nu is fin position

dependent and similar to our observation in Fig. 4, it is

minimum for YP = 0.5 at low Rayleigh numbers and the

effect of fin position at Ra > 107 is not discernible. The

decrease in Nu is 33% at Ra = 104 for YP = 0.5. It is from

5% to 3% for Ra from 107 to 109. Similar results are

observed for WP = 0.7 in Fig. 7(b) where again Nu is

fin position dependent, it has the lowest value for

YP = 0.5 at Ra between 104 and 107, and thereafter the

fin position effect is not discernible. As expected, heat

transfer suppression is further enhanced with longer

fin: at Ra = 104, the decrease in Nu is 37%. These two

cases were presented earlier as the last two columns in

Fig. 4 for Ra = 106 and the mechanism of suppression

was discussed. Similar figures are traced for the case of

WP = 0.7, YP = 0.5 in Fig. 7(b) for Ra = 104 and 108

and presented in Fig. 8. For Ra = 104, jWextj = 1.41 at

(X = 0.66,Y = 0.75), which may be compared to

jWextj = 5.8 of the cavity without fin. We see that com-

pared to the reference case, the heat transfer is sup-

pressed considerably. Two symmetric cells are formed

one below and the other above the fin. The strength of

the cell above the fin is a little larger than that below

due to higher local heat transfer in the upper part of

the cavity. The isotherms on the right show quasi-con-

ductive flow. At Ra = 108, the streamlines show similar

pattern to that in Fig. 3 and jWextj = 68.95 at (X =

0.81,Y = 0.46) is quite enhanced compared to that for

Ra = 106. In this case also, jWextj is considerably

enhanced with respect to that of the cavity without fin,

which is 56.98 (see Table 1). The reason is the same as
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(a)

Fig. 7. Nusselt number as a function of Rayleigh number with kr = 3

kr = 30, WP = 0.5 and YP = 0.1 to 0.9, (b) kr = 30, WP = 0.7 and YP =
discussed for Fig. 6. As expected, the isotherms on the

right show a stratified flow at this high Rayleigh num-

ber. Indeed, we have seen in Figs. 4, 5 and 7 that for

Rayleigh numbers above 107, the effects of geometrical

and thermal parameters are not easily discernible. As

mentioned earlier, the streamlines and isotherms for

high Rayleigh numbers from 107 to 109 showed that

the flow was no longer quasi-conduction dominated

but represented rather a stratified pattern as in Fig. 8.
5. Conclusions

Heat transfer by natural convection in differentially

heated square cavities with horizontal thin fin has been

numerically studied. The cavity was formed by vertical

isothermal walls and adiabatic horizontal walls. A thin

fin was attached to the hot wall. Its dimensionless

length, WP was varied from 0.10 to 0.90 and its dimen-

sionless position, YP from 0.10 to 0.90. The relative con-

ductivity of the thin fin, kr was varied from 1 to 60.

Rayleigh number was from 104 to 109.

Based on the findings in this study, we conclude that

normalized Nusselt number, Nu is an increasing func-

tion of Rayleigh, Ra, and a decreasing function of fin

length, WP and relative conductivity ratio, kr. There is

always an optimum fin position, YP, which is often at

the center or near center of the cavity, which makes heat

transfer by natural convection minimized. There are

however few cases with relative conductivity, kr = 1 in

which heat transfer is enhanced by few percent when

the fin length is short and positioned near the insulated

horizontal boundaries.

Fin having finite conductivity attached on a hot wall

of a differentially heated square cavity modifies the flow

and temperature fields. In comparison with an identical

square cavity without fin, temperature fields in a cavity

with fin manifest a quasi-conduction dominated regime
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0, WP = 0.5 and 0.7, and YP from 0.1 to 0.9 as parameters: (a)

0.1 to 0.9.



Fig. 8. Flow and temperature fields for WP = 0.7 and YP = 0.5: The first row: Ra = 104 and the second row: Ra = 108. The flow field is

on the left and the temperature field on the right.
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at Rayleigh numbers from 104 to 107, thereafter they

show a stratified flow. Conduction through the cavity

is enhanced with fin and it becomes higher when the rel-

ative conductivity is higher, the fin length is longer and

the fin�s position is at or near the cavity center. On the

other hand, natural convection is suppressed due to

the presence of fin, which is intensified when the relative

conductivity is higher, the fin is longer and the fin�s posi-
tion is at or near the cavity center. These counter-acting

mechanisms determine the overall heat transfer through

the cavity. Depending on the application, which may

require maximizing or minimizing heat transfer, these

two mechanisms can be used by choosing appropriate

parameters such as Rayleigh number, relative conductiv-

ity and geometrical parameters. Although most of the

applications could be those in which suppression of heat

transfer by natural convection is desirable, few for heat

transfer enhancement, such as electronic cooling, passive
cooling in dwellings and radiators, can be designed by

choosing appropriate geometrical and thermal fin

parameters. We have seen that depending on the Ray-

leigh number, these parameters can be different, thus

the design parameter selection should be done for each

specific case.
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